734 research outputs found

    Arctic Landscapes in Transition: Responses to Thawing Permafrost

    Get PDF
    Observations indicate that over the past several decades, geomorphic processes in the Arctic have been changing or intensifying. Coastal erosion, which currently supplies most of the sediment and carbon to the Arctic Ocean [Rachold et al., 2000], may have doubled since 1955 [Mars and Houseknecht, 2007]. Further inland, expansion of channel networks [Toniolo et al., 2009] and increased river bank erosion [Costard et al., 2007] have been attributed to warming. Lakes, ponds, and wetlands appear to be more dynamic, growing in some areas, shrinking in others, and changing distribution across lowland regions [e.g., Smith et al., 2005]. On the Arctic coastal plain, recent degradation of frozen ground previously stable for thousands of years suggests 10–30% of lowland and tundra landscapes may be affected by even modest warming [Jorgenson et al., 2006]. In headwater regions, hillslope soil erosion and landslides are increasing [e.g., Gooseff et al., 2009]

    A Preliminary Assessment of Water Partitioning and Ecohydrological Coupling in Northern Headwaters Using Stable Isotopes and Conceptual Runoff Models

    Get PDF
    We combined a conceptual rainfall-runoff model and input–output relationships of stable isotopes to understand ecohydrological influences on hydrological partitioning in snow-influenced northern catchments. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high latitudes. A meta-analysis was carried out using the Hydrologiska Byråns Vattenbalansavdelning (HBV) model to estimate the main storage changes characterizing annual water balances. Annual snowpack storage importance was ranked as Wolf Creek \u3e Krycklan \u3e Dorset \u3e Baker Creek \u3e Dry Creek \u3e Girnock. The subsequent rate and longevity of melt were reflected in calibrated parameters that determine partitioning of waters between more rapid and slower flowpaths and associated variations in soil and groundwater storage. Variability of stream water isotopic composition depends on the following: (i) rate and duration of spring snowmelt; (ii) significance of summer/autumn rainfall; and (iii) relative importance of near-surface and deeper flowpaths in routing water to the stream. Flowpath partitioning also regulates influences of summer evaporation on drainage waters. Deviations of isotope data from the Global Meteoric Water Line showed subtle effects of internal catchment processes on isotopic fractionation most likely through evaporation. Such effects are highly variable among sites and with seasonal differences at some sites. After accounting for climate, evaporative fractionation is strongest at sites where lakes and near-surface runoff processes in wet riparian soils can mobilize isotopically enriched water during summer and autumn. Given close soil–vegetation coupling, this may result in spatial variability in soil water isotope pools available for plant uptake. We argue that stable isotope studies are crucial in addressing the many open questions on hydrological functioning of northern environments

    Past and Future Changes in Arctic Lake and River Ice

    Get PDF
    Paleolimnological evidence from some Arctic lakes suggests that longer ice-free seasons have been experienced since the beginning of the nineteenth century. It has been inferred from some additional records that many Arctic lakes may have crossed an important ecological threshold as a result of recent warming. In the instrumental record, long-term trends exhibit increasingly later freeze-ups and earlier break-ups, closely corresponding to increasing air temperature trends, but with greater sensitivity at the more temperate latitudes. Broad spatial patterns in these trends are also related to major atmospheric circulation patterns. Future projections of lake ice indicate increasingly later freeze-ups and earlier break-ups, decreasing ice thickness, and changes in cover composition, particularly white-ice. For rivers, projected future decreases in south to north air-temperature gradients suggest that the severity of ice-jam flooding may be reduced but this could be mitigated by changes in the magnitude of spring snowmelt

    Rain or Snow: Hydrologic Processes, Observations, Prediction, and Research Needs

    Get PDF
    The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review the processes and physics that control precipitation phase as relevant to hydrologists, focusing on the importance of processes occurring aloft. There is a wide range of options for field observations of precipitation phase, but there is a lack of a robust observation networks in complex terrain. New remote sensing observations have the potential to increase PPM fidelity, but generally require assumptions typical of other PPMs and field validation before they are operational. We review common PPMs and find that accuracy is generally increased at finer measurement intervals and by including humidity information. One important tool for PPM development is atmospheric modeling, which includes microphysical schemes that have not been effectively linked to hydrological models or validated against near-surface precipitation-phase observations. The review concludes by describing key research gaps and recommendations to improve PPMs, including better incorporation of atmospheric information, improved validation datasets, and regional-scale gridded data products. Two key points emerge from this synthesis for the hydrologic community: (1) current PPMs are too simple to capture important processes and are not well validated for most locations, (2) lack of sophisticated PPMs increases the uncertainty in estimation of hydrological sensitivity to changes in precipitation phase at local to regional scales. The advancement of PPMs is a critical research frontier in hydrology that requires scientific cooperation between hydrological and atmospheric modelers and field scientists

    Effects of Changes in Arctic Lake and River Ice

    Get PDF
    Climatic changes to freshwater ice in the Arctic are projected to produce a variety of effects on hydrologic, ecological, and socio-economic systems. Key hydrologic impacts include changes to low flows, lake evaporation regimes and water levels, and river-ice break-up severity and timing. The latter are of particular concern because of their effect on river geomorphology, vegetation, sediment and nutrient fluxes, and sustainment of riparian aquatic habitats. Changes in ice phenology will affect a wide range of related biological aspects of seasonality. Some changes are likely to be gradual, but others could be more abrupt as systems cross critical ecological thresholds. Transportation and hydroelectric production are two of the socio-economic sectors most vulnerable to change in freshwater-ice regimes. Ice roads will require expensive on-land replacements while hydroelectric operations will both benefit and be challenged. The ability to undertake some traditional harvesting methods will also be affected

    Arctic Freshwater Ice and Its Climatic Role

    Get PDF
    Freshwater ice dominates the Arctic terrestrial environment and significantly impacts bio-physical and socio-economic systems. Unlike other major cryospheric components that either blanket large expanses (e.g., snow, permafrost, sea ice) or are concentrated in specific locations, lake and river ice are interwoven into the terrestrial landscape through major flow and storage networks. For instance, the headwaters of large ice-covered rivers extend well beyond the Arctic while many northern lakes owe their genesis to broader cryospheric changes. The effects of freshwater ice on climate mostly occur at the local/regional scale, with the degree of influence dependent on the magnitude, timing, location, and duration of ice cover, and the size of the water body. Freshwater-ice formation, growth, decay, and break-up are influenced by climatic variables that control surface heat fluxes, but these differ markedly between lakes and rivers. Despite the importance of freshwater ice, there has been a recent reduction in observational recordings

    Eleven Years of Mountain Weather, Snow, Soil Moisture and Streamflow Data from the Rain–Snow Transition Zone – the Johnston Draw Catchment, Reynolds Creek Experimental Watershed and Critical Zone Observatory, USA

    Get PDF
    Detailed hydrometeorological data from the rain-to-snow transition zone in mountain regions are limited. As the climate warms, the transition from rain to snow is moving to higher elevations, and these changes are altering the timing of downslope water delivery. To understand how these changes impact hydrological and biological processes in this climatologically sensitive region, detailed observations from the rain-to-snow transition zone are required. We present a complete hydrometeorological dataset for water years 2004 through 2014 for a watershed that spans the rain-to-snow transition zone (https://doi.org/10.15482/usda.adc/1402076). The Johnston Draw watershed (1.8km2), ranging from 1497 to 1869m in elevation, is a sub-watershed of the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho, USA. The dataset includes continuous hourly hydrometeorological variables across a 372m elevation gradient, on north- and south-facing slopes, including air temperature, relative humidity, and snow depth from 11 sites in the watershed. Hourly measurements of incoming shortwave radiation, precipitation, wind speed and direction, soil moisture, and soil temperature are available at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data provide the scientific community with a unique dataset useful for forcing and validating hydrological models and will allow for better representation and understanding of the complex processes that occur in the rain-to-snow transition zone

    Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall-Runoff) model

    Get PDF
    Acknowledgements. This work was funded by the NERC/JPI SIWA project (NE/M019896/1) and the European Research Council ERC (project GA 335910 VeWa). Numerical simulations were performed using the Maxwell High Performance Computing Cluster of the University of Aberdeen IT Service, provided by Dell Inc. and supported by Alces Software. The isotope work in Krycklan is funded by the KAW Branch-Point project together with SKB and SITES. We would like to thank Marjolein van Hui- jgevoort for her help with the STARR code, and Masaki Hayashi and two anonymous reviewers for their insightful suggestions that significantly improved the paper. The Supplement related to this article is available online at https://doi.org/10.5194/hess-21-5089-2017-supplement.Peer reviewedPublisher PD

    Modeling the Isotopic Evolution of Snowpack and Snowmelt: Testing a Spatially Distributed Parsimonious Approach

    Get PDF
    Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments

    A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models

    Get PDF
    Funded by European Research Council ERC. Grant Number: GA 335910 VEWA Swedish Science Foundation (SITES) Future Forest Formas (ForWater) SKB the Kempe foundation Environment Canada the Garfield Weston Foundation the Natural Sciences and Engineering Research Council of Canada (NSERC) the Northwest Territories Cumulative Impacts Monitoring ProgramPeer reviewedPublisher PD
    • …
    corecore